CRITICAL LIMB ISCHEMIA U.S. INDEX OF TABLES

Table 1: Occlusion Types, Duration and Characteristics	14
Table 2: Critical Limb Ischemia Risk Factors	15
Table 3: Critical Limb Ischemia Fontaine and Rutherford Classification Systems	17
Table 4: BASIL Trial 30-Day Mortality and Morbidity	22
Table 5: PREVENT III 30-Day Mortality and Morbidity	23
Table 6: Critical Limb Ischemia Cause of Death	26
Table 7: Critical Limb Ischemia Comorbid Conditions Present in Patients Undergoing Revascularization	26
Table 8: Dialysis Outcomes and Practice Patterns Study (DOPPS) Prevalence of PAD and CLI in ESRD Patients	39
Table 9: Incidence of New PAD In Medicare Patient Sample According to Presence of Diabetes and CKD	41
Table 10: Severity of Baseline Critical Limb Ischemia By Level of Renal Dysfunction	42
Table 11: One-Year Mortality by Renal Function and Severity of Limb Ischemia at Diagnosis	43
Table 12: Summary of CLI Incidence Research And 2010 U.S. Incidence Calculations	48
Table 13: OXVASC CLI Incidence per Million Population	52
Table 14: 2010 U.S. CLI Prevalence Calculated from Incidence Assuming 15% or 20% Annual Mortality	53
Table 15: Summary of CLI Prevalence Research and 2010 U.S. Prevalence	54
Table 16: HUNT Study CLI Prevalence by Age and Sex	57
Table 17: New South Wales Study CLI Prevalence by Age and Sex	59
Table 18: PAD Prevalence in Diabetes	63
Table 19: Cardiovascular Health Study Prevalence of Clinical and Subclinical PAD In Males and Females Age ≥ 65 Categorized by Glucose Status	64
Table 20: The Hoorn Study Prevalence of PAD in Individuals Age 50-74 Categorized by Glucose Status	65

Table 21: The Hoorn Study Prevalence of PAD Categorized by Age Group and Glucose Status	65.
Table 22: Percentage of PAD by Age Group in Newly Diagnosed Italian Type 2 Diabetics	66.
Table 23: East Dorset PAD Prevalence by Age and Sex in Type 2 Diabetics and Nondiabetics	68.
Table 24: NHANES II Percentage of Diabetics and Nondiabetics with PAD	69.
Table 25: 2005-2030 U.S. Peripheral Artery Disease and Critical Limb Ischemia Prevalence in Population Age ≥ 45	70.
Table 26: U.S. Population Age ≥ 65 Glucose Status by Sex NHANES 2005-2006	71.
Table 27: U.S. Population Age ≥ 65 PAD Prevalence by Sex and Glucose Status	72.
Table 28: U.S. Population Age ≥ 65 CLI Prevalence in PAD By Glucose Status	72.
Table 29: U.S. Population Age 45- 64 By Glucose Status NHANES 2005-2006	73.
Table 30: U.S. Population Age 45-64 PAD Prevalence by Glucose Status	74.
Table 31: U.S. Population Age 45-64 CLI Prevalence in PAD By Glucose Status	74.
Table 32: United States 2010-2030 Percentage of Diagnosed Diabetes For Selected Years and Age Groups	75.
Table 33: U.S. 2010-2030 Comparison of CLI Estimates Based on Constant or Increasing Prevalence of Diagnosed Diabetes	76.
Table 34: 2008/2010 U.S. CLI Market in Procedures and Dollars Current Endovascular Market and Potential Endovascular Market	78.
Table 35: U.S. 2010 Critical Limb Ischemia Appropriate Treatment Pathway for Potential Market Estimates	79.
Table 36: 2005-2030 U.S. Market Potential for Antihypertensive Pharmaceuticals to Treat Critical Limb Ischemia Patients	84.
Table 37: 2005-2030 U.S. Market Potential for Antilipid Pharmaceuticals to Treat Critical Limb Ischemia Patients	85.
Table 38: 2005-2030 U.S. Market Potential for Antiplatelet Pharmaceuticals to Treat Critical Limb Ischemia Patients	86.
Table 39: United States 2005-2030 Estimated Number of People with PAD Comparison of Two Methods	89.

INDEX OF FIGURES

Figure 1: Consequences of Critical Limb Ischemia—Six Months	20
Figure 2: One-Year Amputation Rate Inversely Associated with ABI in CLI Patients Unsuitable for Revascularization	21
Figure 3: Five-Year All-Cause Mortality CLI, ALI and Selected Diseases	24
Figure 4: Four-Year Event-Free Survival Intermittent Claudication (IC), Critical Limb Ischemia (CLI) and Acute Limb Ischemia (ALI)	25
Figure 5: Ten-Year Mortality for PAD by Disease Severity Compared to Survivors of First Heart Attack	25
Figure 6: U.S. Adult Population Ages 20 and Older Percent with Diabetes, Prediabetes and Normal Glucose	28
Figure 7: 1970s to 2009 Percentage of Diagnosed Diabetes in Population Age 65 and Over	29
Figure 8: Diabetes as a Percentage of the U.S. Adult Population and Diabetes as a Percent of the U.S. CLI Population	33
Figure 9: 1978-2030 Number of Actual and Projected U.S. ESRD Patients	37
Figure 10: Prevalence of PAD at Baseline In a Medicare Patient Sample According to Presence of Diabetes and Chronic Kidney Disease	41
Figure 11: One-Year Mortality in Patients with CLI Only, ESRD Only and CLI and Severe Kidney Disease by Severity of Ischemia	44
Figure 12: One-Year Amputation-Free Survival After Surgical Revascularization in Dialysis Patients and Patients with Normal Kidney Function	45
Figure 13: Five-Year Survival in ESRD Patients Categorized by Comorbidity and Risk Factors	46
Figure 14: 2010 Market Potential Based on Increased Percentage of Treatment with New Endovascular Technologies	81
Figure 15: 2010 Market Potential Based on Increased Percentage of Treatment with DES/New Stents	82